Всего: 6 1–6
Добавить в вариант
Куб вписан в правильную четырехугольную пирамиду так, что четыре его вершины находятся на боковых ребрах пирамиды, а четыре другие вершины — на ее основании. Длина стороны основания пирамиды равна 2, высота пирамиды — 6. Найдите площадь S поверхности куба. В ответ запишите значение выражения 4S.
Каждое боковое ребро четырехугольной пирамиды образует с ее высотой, равной угол 30°. Основанием пирамиды является прямоугольник с углом 30° между диагоналями. Найдите объем пирамиды V, в ответ запишите значение выражения
SABCD — правильная четырехугольная пирамида, все ребра которой равны 37. Точка М — середина ребра SA. Точка N ∈ SD, DN : NS = 1 : 3. Найдите длину отрезка, по которому плоскость, проходящая через точки N, М, В, пересекает основание ABCD пирамиды.
На рисунке изображена правильная четырехугольная пирамида. Среди отрезков SB, MQ, SM, SO, MN укажите отрезок, который является апофемой правильной четырехугольной пирамиды.
SABCD — правильная четырехугольная пирамида, все ребра которой равны 48. Точка M — середина ребра SD. Точка СN : NS = 1 : 3 (см. рис.). Найдите длину отрезка, по которому плоскость, проходящая через точки M и N параллельно ребру SA, пересекает основание ABCD пирамиды.