Поиск
?


Скопировать ссылку на результаты поиска



Всего: 6    1–6

Добавить в вариант

Задание № 79
i

Если в пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 4, а пло­щадь диа­го­наль­но­го се­че­ния равна 12, то ее объем равен ...


Аналоги к заданию № 79: 439 469 499 ... Все


Куб впи­сан в пра­виль­ную че­ты­рех­уголь­ную пи­ра­ми­ду так, что че­ты­ре его вер­ши­ны на­хо­дят­ся на бо­ко­вых реб­рах пи­ра­ми­ды, а че­ты­ре дру­гие вер­ши­ны  — на ее ос­но­ва­нии. Длина сто­ро­ны ос­но­ва­ния пи­ра­ми­ды равна 2, вы­со­та пи­ра­ми­ды  — 6. Най­ди­те пло­щадь S по­верх­но­сти куба. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 4S.


Аналоги к заданию № 208: 688 718 748 ... Все


Задание № 235
i

Каж­дое бо­ко­вое ребро че­ты­рех­уголь­ной пи­ра­ми­ды об­ра­зу­ет с ее вы­со­той, рав­ной 3 ко­рень из 7 , угол 30°. Ос­но­ва­ни­ем пи­ра­ми­ды яв­ля­ет­ся пря­мо­уголь­ник с углом 30° между диа­го­на­ля­ми. Най­ди­те объем пи­ра­ми­ды V, в ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  ко­рень из 7 умно­жить на V.


Аналоги к заданию № 235: 805 835 865 ... Все


SABCD  — пра­виль­ная че­ты­рех­уголь­ная пи­ра­ми­да, все ребра ко­то­рой равны 37. Точка М  — се­ре­ди­на ребра SA. Точка N ∈ SD, DN : NS  =  1 : 3. Най­ди­те длину от­рез­ка, по ко­то­ро­му плос­кость, про­хо­дя­щая через точки N, М, В, пе­ре­се­ка­ет ос­но­ва­ние ABCD пи­ра­ми­ды.

1)  дробь: чис­ли­тель: 37 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
2)  целая часть: 46, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
3)  дробь: чис­ли­тель: 37 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 37 ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
5)  дробь: чис­ли­тель: 37 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби

Аналоги к заданию № 1617: 1636 Все


Задание № 1653
i

На ри­сун­ке изоб­ра­же­на пра­виль­ная че­ты­рех­уголь­ная пи­ра­ми­да. Среди от­рез­ков SB, MQ, SM, SO, MN ука­жи­те от­ре­зок, ко­то­рый яв­ля­ет­ся апо­фе­мой пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды.

1) SB
2) MQ
3) SM
4) SO
5)

Аналоги к заданию № 1653: 1685 Все


Задание № 1777
i

SABCD  — пра­виль­ная че­ты­рех­уголь­ная пи­ра­ми­да, все ребра ко­то­рой равны 48. Точка M  — се­ре­ди­на ребра SD. Точка N при­над­ле­жит SC, СN : NS  =  1 : 3 (см. рис.). Най­ди­те длину от­рез­ка, по ко­то­ро­му плос­кость, про­хо­дя­щая через точки M и N па­рал­лель­но ребру SA, пе­ре­се­ка­ет ос­но­ва­ние ABCD пи­ра­ми­ды.

1) 16 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та
2) 16 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
3) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 37 конец ар­гу­мен­та
4) 12 ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та
5) 56

Аналоги к заданию № 1777: 1809 Все

Всего: 6    1–6